Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 233, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438840

RESUMO

BACKGROUND: Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited. RESULTS: A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome. CONCLUSIONS: We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.


Assuntos
Perciformes , Animais , Perciformes/genética , Genômica , Regiões Antárticas , Evolução Biológica , Proteínas Anticongelantes
2.
Front Genet ; 13: 926638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983410

RESUMO

The European flat oyster (Ostrea edulis) is a bivalve mollusc that was once widely distributed across Europe and represented an important food resource for humans for centuries. Populations of O. edulis experienced a severe decline across their biogeographic range mainly due to overexploitation and disease outbreaks. To restore the economic and ecological benefits of European flat oyster populations, extensive protection and restoration efforts are in place within Europe. In line with the increasing interest in supporting restoration and oyster farming through the breeding of stocks with enhanced performance, the present study aimed to evaluate the potential of genomic selection for improving growth traits in a European flat oyster population obtained from successive mass-spawning events. Four growth-related traits were evaluated: total weight (TW), shell height (SH), shell width (SW) and shell length (SL). The heritability of the growth traits was in the low-moderate range, with estimates of 0.45, 0.37, 0.22, and 0.32 for TW, SH, SW and SL, respectively. A genome-wide association analysis revealed a largely polygenic architecture for the four growth traits, with two distinct QTLs detected on chromosome 4. To investigate whether genomic selection can be implemented in flat oyster breeding at a reduced cost, the utility of low-density SNP panels was assessed. Genomic prediction accuracies using the full density panel were high (> 0.83 for all traits). The evaluation of the effect of reducing the number of markers used to predict genomic breeding values revealed that similar selection accuracies could be achieved for all traits with 2K SNPs as for a full panel containing 4,577 SNPs. Only slight reductions in accuracies were observed at the lowest SNP density tested (i.e., 100 SNPs), likely due to a high relatedness between individuals being included in the training and validation sets during cross-validation. Overall, our results suggest that the genetic improvement of growth traits in oysters is feasible. Nevertheless, and although low-density SNP panels appear as a promising strategy for applying GS at a reduced cost, additional populations with different degrees of genetic relatedness should be assessed to derive estimates of prediction accuracies to be expected in practical breeding programmes.

3.
Mol Ecol Resour ; 22(2): 664-678, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34549891

RESUMO

Eukaryote symbionts of animals are major drivers of ecosystems not only because of their diversity and host interactions from variable pathogenicity but also through different key roles such as commensalism and to different types of interdependence. However, molecular investigations of metazoan eukaryomes require minimising coamplification of homologous host genes. In this study we (1) identified a previously published "antimetazoan" reverse primer to theoretically enable amplification of a wider range of microeukaryotic symbionts, including more evolutionarily divergent sequence types, (2) evaluated in silico several antimetazoan primer combinations, and (3) optimised the application of the best performing primer pair for high throughput sequencing (HTS) by comparing one-step and two-step PCR amplification approaches, testing different annealing temperatures and evaluating the taxonomic profiles produced by HTS and data analysis. The primer combination 574*F - UNonMet_DB tested in silico showed the largest diversity of nonmetazoan sequence types in the SILVA database and was also the shortest available primer combination for broadly-targeting antimetazoan amplification across the 18S rRNA gene V4 region. We demonstrate that the one-step PCR approach used for library preparation produces significantly lower proportions of metazoan reads, and a more comprehensive coverage of host-associated microeukaryote reads than the two-step approach. Using higher PCR annealing temperatures further increased the proportion of nonmetazoan reads in all sample types tested. The resulting V4 region amplicons were taxonomically informative even when only the forward read is analysed. This region also revealed a diversity of known and putatively parasitic lineages and a wider diversity of host-associated eukaryotes.


Assuntos
DNA Ambiental , Eucariotos , Animais , Ecossistema , Eucariotos/genética , Células Eucarióticas , RNA Ribossômico 18S/genética
4.
Viruses ; 13(6)2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199268

RESUMO

White Spot Disease (WSD) presents a major barrier to penaeid shrimp production. Mechanisms underlying White Spot Syndrome Virus (WSSV) susceptibility in penaeids are poorly understood due to limited information related to early infection. We investigated mRNA and miRNA transcription in Penaeus vannamei over 36 h following infection. Over this time course, 6192 transcripts and 27 miRNAs were differentially expressed-with limited differential expression from 3-12 h post injection (hpi) and a more significant transcriptional response associated with the onset of disease symptoms (24 hpi). During early infection, regulated processes included cytoskeletal remodelling and alterations in phagocytic activity that may assist WSSV entry and translocation, novel miRNA-induced metabolic shifts, and the downregulation of ATP-dependent proton transporter subunits that may impair cellular recycling. During later infection, uncoupling of the electron transport chain may drive cellular dysfunction and lead to high mortalities in infected penaeids. We propose that post-transcriptional silencing of the immune priming gene Dscam (downregulated following infections) by a novel shrimp miRNA (Pva-pmiR-78; upregulated) as a potential mechanism preventing future recognition of WSSV that may be suppressed in surviving shrimp. Our findings improve our understanding of WSD pathogenesis in P. vannamei and provide potential avenues for future development of prophylactics and treatments.


Assuntos
Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Penaeidae/genética , Penaeidae/virologia , RNA Mensageiro/genética , Vírus da Síndrome da Mancha Branca 1 , Doenças dos Animais/genética , Doenças dos Animais/patologia , Doenças dos Animais/virologia , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , Modelos Biológicos , RNA Mensageiro/química , Transcriptoma , Carga Viral
5.
Mar Genomics ; 51: 100734, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31818705

RESUMO

The pearl oyster Pinctada imbricata radiata is an iconic species in Qatar, representing an integral part of the nation's cultural heritage and one of the main economic foundations upon which the nation developed. During the early part of the 20th century, nearly half the Qatar population was involved in the pearl oyster industry. However, the fishery has undergone steady decline since the 1930s, and the species is now under threat due to multiple confounding pressures. This manuscript presents the first de novo transcriptome of the Qatari pearl oyster assembled into 30,739 non-redundant coding sequences and with a BUSCO completeness score of 98.4%. Analysis of the transcriptome reveals the close evolutionary distance to the conspecific animal Pinctada imbricata fucata but also highlights differences in immune genes and the presence of distinctive transposon families, suggesting recent adaptive divergence. This data is made available for all to utilise in future studies on the species.


Assuntos
Pinctada/genética , Transcriptoma , Animais , Catar
6.
Parasitology ; 146(8): 1022-1029, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30975238

RESUMO

Aphanomyces astaci causes crayfish plague, which is a devastating disease of European freshwater crayfish. The likely first introduction of A. astaci into Europe was in the mid-19th century in Italy, presumably with the introduction of North American crayfish. These crayfish can carry A. astaci in their cuticle as a benign infection. Aphanomyces astaci rapidly spread across Europe causing the decline of the highly susceptible indigenous crayfish species. Random amplified polymorphic DNA-PCR analysis of A. astaci pure cultures characterized five genotype groups (A, B, C, D and E). Current A. astaci genotyping techniques (microsatellites and genotype-specific regions, both targeting nuclear DNA) can be applied directly to DNA extracted from infected cuticles but require high infection levels. Therefore, they are not suitable for genotyping benign infections in North American crayfish (carriers). In the present study, we combine bioinformatics and molecular biology techniques to develop A. astaci genotyping molecular markers that target the mitochondrial DNA, increasing the sensitivity of the genotyping tools. The assays were validated on DNA extracts of A. astaci pure cultures, crayfish tissue extractions from crayfish plague outbreaks and tissue extractions from North American carriers. We demonstrate the presence of A. astaci genotype groups A and B in UK waters.


Assuntos
Aphanomyces/isolamento & purificação , Astacoidea/microbiologia , DNA Fúngico/análise , DNA Mitocondrial/análise , Genótipo , Técnicas de Genotipagem/métodos , Animais , Aphanomyces/genética
7.
J Invertebr Pathol ; 156: 6-13, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29953875

RESUMO

The oomycete Aphanomyces astaci causes crayfish plague, the most important disease of European freshwater crayfish species. Presumably introduced into Europe 150 years ago with the import of North American crayfish, A. astaci is highly pathogenic to European crayfish species. Five genotypes (A, B, C, D, and E) have been defined based on random amplified polymorphic DNA analysis (RAPD-PCR) from A. astaci pure cultures. The distinction of genotypes is an essential tool to conduct molecular epidemiological studies on crayfish plague and it has been used to clarify and better understand the history and spread of this disease in Europe. Whereas RAPD-PCR requires DNA from pure culture isolates, the development of genotyping tools that can be applied to DNA extracted from clinical samples allows a much wider application of genotyping studies, including revisiting historic samples. In this study, we present a new approach that adds to currently available methods for genotyping A. astaci strains directly from clinical crayfish samples. Whole-genome sequencing of A. astaci strains representing all currently known genotypes was employed, genomic regions unique to the respective genotype identified, and a PCR-based genotyping assay designed, which focuses on the presence/absence of PCR product after amplification with the genotype-specific primers. Our diagnostic methodology was tested using DNA extracts from pure A. astaci cultures, other Aphanomyces species and additional oomycetes, samples from a recent Italian crayfish plague outbreak and additional historical samples available in the Centre for Environment, Fisheries and Aquaculture Science laboratory. The new markers were reliable for pure culture and clinical samples from a recent outbreak and successfully discriminated genotype A, B, D, and E. The marker for genotype C required an additional sequencing step of the generated PCR product to confirm genotype.


Assuntos
Aphanomyces/genética , Astacoidea/parasitologia , Técnicas de Genotipagem/métodos , Infecções/veterinária , Sequenciamento Completo do Genoma/métodos , Animais , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...